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Abstract

The balance of long-shore momentum flux requires that the solution of retroflecting
currents involves ring shedding on the western side. An important aspect of the ring
dynamics is the ring intensity α (analogous to the Rossby number), which reaches its
maximum value of unity when the upstream potential vorticity (PV) is zero. Friction5

leads to a slow-down and a decrease in α. The main difficulty is that the solution of
the system of equations for conservation of mass and momentum of zonal currents
leads to the conclusion that the ratio (Φ) of the mass flux going into the rings and
the total incoming mass flux is approximately 4α/(1+2α). This yields the “vorticity
paradox” – only relatively weak rings (α≤1/2) could satisfy the necessary condition10

Φ≤1. Physically, this means, for example, that the momentum-flux of zero PV currents
upstream is so high that, no matter how many rings are produced and no matter what
size they are, they cannot compensate for it.

To avoid this paradox, we develop a nonlinear analytical model of retroflection from
a slanted non-zonal coastline. We show that when the slant of coastline (γ) exceeds15

merely 15◦, Φ does not reach unity regardless of the value of α. Namely, the paradox
disappears even for small slants. Our slowly varying nonlinear solution does not only
let us circumvent the paradox. It also gives a detailed description of the rings growth
rate and the mass flux going into the rings as a function of time. For example, in the
case of zero PV and zero thickness of the upper layer along the coastline, the maximal20

values of Φ can be approximately expressed as, 1.012+0.32 exp(−γ/3.41)−γ/225.
Interestingly, for significant slants (γ≥30◦), the rings reach a terminal size correspond-
ing to a balance between the β-force and the upstream momentum flux. This terminal
size is unrelated to the ultimate detachment and westward drift due to β. Our analytical
solutions are in very good agreement with the results of a numerical model which we25

run.
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1 Introduction

Recent hypotheses regarding retroflecting currents, such as the North Brazil Current
(NBC), the Agulhas Current (AC), and the East Australian Current (EAC), have put
forward the idea that rings are shed primarily by inertial and momentum imbalances,
rather than by local instabilities, upstream variability or coastline curvature. For exam-5

ple, regarding the AC (whose rings play a very important role in the exchange between
the Indian and the Atlantic Oceans), this suggestion is supported by observations that
the Agulhas eddies correspond to a primarily zonal protrusion of the parent current
and are typically larger than rings produced by instability. Ou and De Ruijter (1986)
argued that the curvature of the South American coast forces the coast to “separate10

from the AC” rather than the AC to separate from the coast. Under such conditions,
inertia forces the AC to make a loop that closes upon itself, forming a ring. Nof and
Pichevin (1996), and Pichevin et al. (1999) proposed a purely inertial mechanism of
ring formation, in the context of a reduced gravity model in which the retroflection of a
zonally flowing current is “prescribed” through inflow conditions. It was shown that tak-15

ing into account the development of eddies on the western side allows one to balance
the alongshore momentum flux, that is, to resolve the so-called “retroflection paradox”.
The theoretically obtained periods of eddy formation were shown to be roughly in ac-
cordance with the observations, although the obtained radii were about twice as large
as typical observed values. Being an integrated constraint, the solution did not allow20

for the detailed calculation of the rings’ growth rate nor did it allow for any detailed cal-
culations. These detailed calculations, which were not done in the earlier studies, are
the focus of the present work.

Observations suggest that the rings mass transport into the Southern Atlantic is
relatively small, about 3–20% of the total mass flux of the AC (Lutjeharms, 2006).25

Using the slowly varying approach, we will show here (analytically and numerically)
that the approximation of a purely zonal retroflection (Nof and Pichevin, 1996) leads to
the conclusion that only weak eddies resulting from weak AC (i.e., small vorticity) can
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be formed from this small part of the flux. We will refer to this peculiar aspect as the
“vorticity paradox”.

We shall show that one way to circumvent this paradox is to consider slanted coast-
lines instead of zonal ones. This does not really resolve the paradox but it does take
us away from it allowing us to derive a detailed solution. Therefore, we shall focus on5

the role that the angle of the coastal slant plays in the AC retroflection. Our solution will
show that a growing slant of the coastline leads to a decrease in the mass flux going
into the rings. In the limit of a meridional boundary (90◦ slant), no eddies are formed.

1.1 Observational background

The AC, whose estimated transport is about 65–70 Sv (Gordon et al., 1987), is10

presently the strongest western boundary current (WBC) in the world ocean (Fig. 1). It
is an important part of the subtropical “super gyre” whose southern boundary is largely
determined by the position of the zero wind stress curl (de Ruijter, 1982). The rings
shed from the AC are responsible for transporting most of the water masses from the In-
dian Ocean into the South Atlantic and, therefore, contribute to the near-surface return15

flow of the North Atlantic Deep Water (NADW) from the Pacific and Indian Oceans to
the North Atlantic (van Veldhoven, 2005). The annual transport (into the South Atlantic)
associated with an average Agulhas ring is estimated to be between 0.5 and 1.5 Sv,
with correspondingly large ranges in the heat and salt anomaly estimates. Estimates of
the rings’ radius vary. For example, while direct observations suggest that “Astrid” was20

140 km in radius (van Aken et al., 2003; van Veldhoven, 2005), the METEOSAT satellite
data points to 162 km (Lutjeharms, 2006, p. 171). Since there are several rings shed
every year, their common transport is 3–10 Sv representing a significant part of the
meridional overturning circulation (MOC). Weijer et al. (1999) showed that the saline
source of Agulhas water stabilizes the MOC whereas the fresher cold-water flux from25

the Arctic Ocean destabilizes it.
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1.2 Theoretical background

The retroflection process in question involves two different aspects. First, within the
context of a 1.5-layer model, Nof and Pichevin (1996) showed that, in the case of a
nearly zonal coastline, westward-drifting rings (generated at the retroflection) must
be present in order to resolve the so-called “retroflection paradox”. On the other5

hand, in the case of exactly meridionally directed incident current, no eddy detach-
ment has been exhibited in both analytical and numerical models (Arruda et al., 2004).
Namely, if the ratio of mass flux going into the eddies and incoming flux is denoted
by Φ=(Q−q)/Q (where Q and q are the mass fluxes of incoming and retroflected cur-
rents), then Φ is maximal in the case of a zonal boundary and zero in the case of a10

strictly meridional boundary. Therefore, Φ is expected to be monotonically decreasing
as a function of the coastline slant, γ.

The second important characteristic is the eddy radius (R). For the related case
of ballooning outflows (i.e., outflows from a narrow channel on an f plane), Nof and
Pichevin (2001, NP, hereafter) and Nof (2005) showed that the basic eddy (i.e., the15

eddy next to the channel mouth, hereafter referred to as BE) radius increases with time

as t1/4. A similar behavior is to be expected in our present case of currents retroflecting
from zonal coasts. However, as mentioned, when the coastline is nearly meridional,
Φ is nearly zero so that the eddy growth rate is nearly zero. Consequently, the final
radius, Rf , is expected to decrease as the slant increases.20

The effect of a coastal slant on these characteristics is, evidently, essential. Some
of this was recognized before – the importance of coastal geometry was mentioned
by Ou and de Ruijter (1986), Boudra and Chassignet (1988), de Ruijter et al. (1999),
Chassignet and Boudra (1988), and Pichevin et al. (1999). However, none of the above
alluded to the issues that we are addressing here, the significance of the AC intensity,25

and the issue of eddy generation.

5
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1.3 Present approach

As mentioned, we will develop a nonlinear retroflection model (Fig. 2) using the slowly
varying approach suggested by Nof (2005) and will include a nonzero slant (γ) and a
finite thickness of the upper layer surrounding the retroflection (H). We shall consider
here the development of the BE before its detachment, due to the β-induced westward5

movement, which will be addressed later in a companion article. We will show that a
growing slant of the coastline slows down the rings’ growth rate and leads to a rapid
decrease in the value of Φ. As mentioned, this will enable us to avoid the “vorticity
paradox”.

The paper is organized as follows. In Sect. 2, we will discuss the “vorticity paradox”10

in relation to the retroflection from zonal coastline, and then deduce the governing
equation that control the development of BE in the case of retroflection from a slanted
coastline. In Sect. 3, we will obtain the analytical expressions for all the terms in these
equations. In Sect. 4, we will present the numerical resolutions. Section 5 is devoted
to comparisons of our results with numerical simulations, and Sect. 6 summarizes our15

results.

2 Statement of problem

This section contains the physics of the problem and the mathematical approach. Fol-
lowing Pichevin et al. (1999), we consider a boundary current (with density ρ) em-
bedded in an infinitely deep, stagnant lower layer with density (ρ+∆ρ). The current is20

flowing along a rectilinear wall and retroflects (Fig. 2). The cause of the retroflection
is not important for our consideration but one may assume that it is due to a vanishing
wind stress curl. The wall is not zonal – the slant (γ) varies between zero for a zonal
coastline and 90◦ for a meridional coastline.

Following NP, we will use an expansion in ε=(βRd/f0):O(0.01), where Rd is the25

Rossby radius and f0 the mean Coriolis parameter. (All of our variables are conven-
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tional and are defined in both the text and Appendix A.) We shall consider either a BE
whose PV was nonzero to begin with, or an eddy whose PV has been gradually altered
by frictional processes over a very long period. We shall suppose that the BE main
orbital flow νθ is,

νθ =
αf r
2
, α ≤ 1, (1)5

where f , the Coriolis parameter, is nearly constant at the scale of the eddy, α measures
the eddy intensity (and is twice the familiar Rossby number), and the bar indicates that
we speak about the basic f -plane state. Note that, for an incoming flow emptying into
the ocean through a narrow channel, NP showed that Φ=2α/(2α+1). In that case,
there is no “vorticity paradox” because Φ is smaller than unity for all α. This is be-10

cause, in the NP outflow problem, the momentum of only one current needs to be
compensated for by the rings whereas two currents need to be compensated for in the
retroflection case discussed here.

Following the NP approach, we find that the volume conservation for a retroflecting
current is,15

Q − q =
dV
dt

=
πα(2 − α)f 2R3

4g′
dR
dt
, (2)

where g′ is the reduced gravity, and R(t) is the BE radius. Similarly, the momentum-flux
balance for a zonal retroflecting current yields,

−
f R(Q + q)

2
+ Cy

∫ ∫
s

f hdxdy = 0. (3)

The first term is the momentum flux of the upstream and retroflecting current whereas20

the second is the integrated Coriolis force associated with the movement of the eddy
off the wall.

7
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As in NP, we assume that Cy=dR/dt and get a second equation for Q and q,

Q + q =
πα(2 − α)f 2R3

8g′
dR
dt
, (4)

which, with Eq. (2), gives,

Φ =
4α

1 + 2α
. (5)

This introduces the “vorticity paradox” – the problem has a physically meaningful so-5

lution (Φ≤1) only in the case of a weak eddies when α≤1/2. This is because, in the
strong inertial limit (α larger than 1/2), the momentum flux of the retroflecting current
is just too high for rings to compensate for it, no matter how many there are and no
matter how large they are.

We shall circumvent this paradox by varying the thickness of the upper water near10

the wall (h0), the dependent off-shore thickness outside the retroflection region (H), α,
and γ. We will use an off-shore and a long-shore coordinate system (ξ, η) moving with
the BE (Fig. 2) involving the familiar transformation formulae,

ξ = χ cosγ + y sinγ, η = −χ sinγ + y cosγ.

2.1 Conservation of volume15

The integrated volume conservation equation is,

d
dt

∫ ∫
s

hdξdη = Q − q, (6)

Recall that the relationships between our moving coordinates ξ and η and ξ̂, η̂ and

t̂ in the fixed system are: ξ=ξ̂−
t̂∫
0
Cξdt, η=η̂−

t̂∫
0
Cηdt, and t̂=t. Following NP, we will

8
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assume that the shape of the BE is nearly circular. We will see that this approximation
is satisfied for the mean, but not for very small α because, in this limit, the BE is very
large. Our next important point concerns the magnitude of q. In the earlier studies, Φ
was obtained to be nearly constant. In contrast, we will show here that q, and therefore
Φ, will vary dramatically in time, implying that the differential equations describing the5

growth of the BE are strongly non-linear.

2.2 Momentum flux

Introducing the streamfunction ψ to be ∂ψ/∂η=−u∗h, ∂ψ/∂ξ=v ∗h, and taking into
account the continuity equation, we write the momentum equations in the form:

− ∂2ψ
∂η∂t

+ h
∂Cξ
∂t

+
∂(hu∗2)

∂ξ
+
∂(hu∗v ∗)
∂η

− f ∂ψ
∂ξ

− f hCη +
g′

2
∂h2

∂ξ
= 0, (7a)10

∂2ψ
∂ξ∂t

+ h
∂Cη
∂t

+
∂(hu∗v ∗)
∂ξ

+
∂(hu∗2)

∂η
− f ∂ψ

∂η
+ f hCξ +

g′

2
∂h2

∂η
= 0. (7b)

Here, f=−f0+βψ sinγ, where f0 is positive for the Southern Hemisphere. The stars
indicate that the variable in question is given in the new, moving coordinate system. As
in NP, Eq. (7b) cannot be used because, with our approach, it is impossible to calculate
the pressure exerted on the BE by the wall.15

Next, Eq. (7a) is integrated over the area bounded by the thick grey arrowed
line shown in Fig. 2. Using the Stokes’ theorem, and taking into account that
∂f /∂ξ=β sinγ, one obtains,∫
φ

[
∂ψ
∂t

− hu∗v ∗
]
dξ +

∫
φ

[
hu∗2 +

g′h2

2
− fΨ

]
dη +

∫ ∫
s

[
h
∂Cξ
∂t

− βψ sinγ − f hCη

]
dξdη = 0. (8)

Following NP, we now introduce a “fast” time scale, ∼O(f −1), and a “slow” time scale,20

∼O(βRd )−1. We will see that, such a definition of time scales, is valid not only when
9
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the BE is well developed but also at the beginning of the BE developmental stage. With
the slowly varying approximation one neglects the time derivatives in the momentum
equations upfront (i.e., the terms containing ∂ψ/∂t and ∂Cξ/∂t in Eq. 8) but keeps the
time dependent terms in the continuity equation. We point out in passing that, because
of the eddy radial symmetry, the first time dependent term in Eq. (8) is negligible even5

without the slowly varying approximation.
Geostrophy of the one-dimensional upstream currents implies that we cannot take

h≡0 outside the retroflection region because, with zero thickness outside, there is no
net volume flux going into the rings. Hence, the thickness off-shore will be taken to be
H . The slowness of the BE generation process enables us to assume geostrophic bal-10

ance along the downstream retroflected current. Nof and Pichevin (1996) showed that,
in such a case, we may neglect the sum of the terms g′h2/2 and −f ψ (integrated over
η) in Eq. (8). The term −hu∗v ∗ integrated over ξ is also negligible because v ∗≡0 along
the wall, and disturbances outside the BE are small. Finally, the main contributions to

the integral
∫
φ
hu∗2dη are

A1∫
A
hu∗2d (−η), from the incoming current, and

D2∫
D1

hu∗2d (−η),15

from the retroflected current. It is easy to demonstrate that the last term is equal to,

where
D3∫
D2

hu∗2d (−γ)× cos y , where D3D2 is shown in Fig. 2. In view of this, we re-write

Eq. (8) in the form:

F1 + F2 cos γ − F3 − F4 sin γ = 0, (9)

where F1=
A1∫
A
hu∗2dl , F2=

D3∫
D2

hu∗2dl , F3=Cη
∫ ∫
s
f hdξdη, and F4=β

∫ ∫
s
ψdξdη.20

Equation (9) represents a balance of four forces. The first term is the force (i.e.,
momentum-flux) produced by the incoming current flowing along the slanted coast.
The second is the force of the zonally retroflected current downstream. The third is
the integrated Coriolis force resulting from the growth of the BE which forces its center

10
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to migrate off-shore. Finally, the fourth is an equatorward β-force resulting from the
counterclockwise rotation of eddy particles within the BE (in the Southern Hemisphere).
We note that in the third term, both Cη and f are negative; for the Northern Hemisphere,
Eq. (9) remains the same, but with positive Cη and f . In the case γ=90◦, Eq. (9) takes
the form of the meridional momentum balance considered by Arruda et al. (2004).5

Because the BE is formed some distance away from the wall, we do not expect the
so-called “image effect” to be important and neither do we expect leakages of the kind
discussed by Nof (1999) to be important. Unfortunately, we know of no scaling that can
support these choices and we will make these two assumptions with the understanding
that the numerics will provide the test for their validity. We shall see that the neglect of10

these two processes is indeed justified.

3 Analytical approach

3.1 The “small distortion approximation”

We assume that our problem is slowly varying in time, and that the BE boundary is
not far from a circle. We note that the BE does not have to conserve PV on the long15

timescale, but must conserve it on the short timescale. Namely, at each moment of
time, the PV of the BE must be equal to that of the retroflected current. However, the
frictional effects can accumulate over the long time period to become significant and,
hence, can alter the PV. We can re-write Eq. (6) in the form:

dV
dt

= Q − q, (10)20

where V is the BE volume (to be expressed as a function of its radius).

11
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3.2 Properties of the γ→0 case

In this case, the incoming and retroflected currents are joined (in the sense that A1 co-
incides with D2), so that instead of having two segments we now have one combined
AD3. For convenience, we re-drew this special case (Fig. 3) introducing the new no-
tations and returning to the original coordinate system (x, y). The integration segment5

for F2 is now A1A2 so that we have,

F1 =

−d1∫
0

hu2dy, F2 =

−(d1+d2)∫
−d1

hu2dy, F4 = β
∫ ∫
s

ψdxdy, (11)

where the expression for F3 remains the same as before, d1 and d2 are the widths of
the incoming and retroflected currents.

We introduce the polar coordinate system (r, θ) centered at E and assume that10

Eq. (1) applies. We also require conservation of the Bernoulli integral along the outer
edge of the retroflected current (h=H) and the BE so that one of our boundary condi-
tions is,

u
∣∣
y=−(d1+d2) = u1 =

αfR
2
, x≥0, (12)

Where u1 is the absolute velocity along the outer edge.15

Since our theoretical analysis is inviscid, the condition of a continuity velocity across
the streamline separating the upstream incoming and the downstream outgoing cur-
rents does not have to be satisfied. We do satisfy, of course, the continuity of velocities
along the streamlines passing through the cross-section connecting the currents and
the BE (x=0),20

vθ |x=0 = u |x=0. (13)

And, we also satisfy the Bernoulli along the wall,

u
∣∣
y=0 = −u1, x ≥ 0. (14)

12
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For simplicity, we shall suppose that the velocity in the incoming and retroflected cur-
rents depends linearly on y , allowing the above-mentioned velocity jump along the
separating streamline (y=−d1).

Although a velocity jump across a streamline is in general allowed (in analogy to
the slip condition), we introduce the initial conditions in a manner that satisfies the5

continuity of the velocities. To do so, we assume that, initially, when the BE starts to
develop, a complete retroflection occurs, so that Q=q and d1=d2. To satisfy Eq. (13),
we should take R=d1 and u|y=−d1

=0 at t=0. Furthermore, the growth of the BE in
time implies R>max(d1, d2); and, therefore, from Eq. (13) we deduce for the incoming
current in the region x≥0,10

u = −
u1(R − d1)

R
at y = −d1, (15a)

and, for the retroflecting current,

u =
u1(R − d2)

R
at y = −d1. (15b)

For the linear current velocity profiles, Eqs. (12)–(15) yield:

u =
αf
2

(y − R),0 ≤ −y ≤ d1; u =
αf
2

(y + R − d1 − d2), d1 < −y ≤ d1 + d2. (16)15

Both currents are geostrophic so that,

∂h
∂γ

= − f
g′
u(y). (17)

Integrating Eq. (17) with a substitution of Eq. (16), and taking into account that
h should be continuous across the separating streamline between the incoming and
retroflected currents (y=−d1), we obtain:20

h = −αf
2

4g′
y (2R + y) + h0, 0 < −y ≤ d1, (18a)

13
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and

h=−αf
2

4g′
{y [2 (d1 + d2 − R + y) + 2d1 (2R − d1 − d2)]} + h0, d1 < −y ≤ d1 + d2. (18b)

Next, we use the volume fluxes relationships,

Q =

−d1∫
0

hudy, q=−
−(d1+d2)∫
−d1

hudy. (19)

Substituting Eqs. (16) and (18) into Eq. (19), and solving the equations for and d1 and5

d2, we finally have,

d1,2 = R − δ1,2, (20)

where

δ1=
[
R2 −

4g′

αf 2

(
h̃ − h0

)]1/2

, δ2 =
[
R2 −

4g′

αf 2

(
h̃ − H

)]1/2

(21)

h̃ =
[
h2

0 +
2fQ
g′

]1/2

, H =
[
h2

0 +
2f (Q − q)

g′

]1/2

(22)10

Using Eqs. (18), (20), and (21), it is easy to show that h=h̃ at y=−d1 and h=H at
y=−(d1+d2), as should be the case. The solution will be completed in the next sub-
sections.

3.3 The forces balance in the γ→0 case

To obtain the expressions for F1 and F2, we substitute Eqs. (16), (18), and (20) to (22),15

into Eq. (11). After some algebra, we find,

F1=
α3f 4

240g′
(2R5 − 5δ3

1R
2 + 3δ5

1 ) +
α2f 2h0

12
(R3 − δ3

1 ), (23)

14

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/5/1/2008/osd-5-1-2008-print.pdf
http://www.ocean-sci-discuss.net/5/1/2008/osd-5-1-2008-discussion.html
http://www.egu.eu


OSD
5, 1–37, 2008

Retroflection from
slanted coastlines

V. Zharkov and D. Nof

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

F2 =
α3f 4

240g′

[
2R5 − 5(δ2

1 − δ2
2 )R3 − 5δ3

2R
2 + 5δ2

1δ
3
2 − 2δ5

2

]
+
α2f 2h0

12
(R3 − δ3

2 ), (24)

where Eqs. (21) and (22) have also been employed.
The leading-order expressions for F3 and F4 can be obtained by using the polar

coordinate system (r, θ) with the basic equation,

νθ
2

r
+ f νθ = g′

∂h
∂r
, (25)5

where νθ is given by Eq. (1), and the boundary condition of continuous h is, h=H at
r=R. The solution is:

h(r) =
α(2 − α)f 2

8g′

(
R2 − r2

)
+ H. (26)

The volume of the circular eddy is V =2π
R∫
0
h(r)rdr which together with Eq. (26) yields,

V = πR2

[
α(2 − α)f 2R2

16g′
+ H

]
. (27)10

Therefore,

F3 = πR2f

[
α(2 − α)f 2R2

16g′
+ H

]
dR
dt
. (28)

Defining F4 in the same manner as in Nof (1981), we obtain from Eq. (26) that

F4 = 2πβ

R∫
0

rψdr,

15
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where

∂ψ
∂r

=
αf
2

[
rH∗ +

α(2 − α)f 2(R2r − r3)
8g′

]
,

giving,

F4 =
παβfR4

8

[
α(2 − α)f 2R2

24g′
+ H

]
. (29)

3.4 The general force balance in the γ 6=0 case5

Finally, Eq. (9) with Eqs. (23), (24), (28) and (29) gives a nonlinear equation for dR/dt,

(αf )3

240

[
2(1 + cos γ)R5 − 5 cos γ(δ2

1 − δ2
2 )R3 − 5(δ3

1 + δ3
2 cos γ)R2

+(3δ5
1 + 5δ2

1δ
3
2 cos γ − 2δ5

2 cos γ)
]
+
α2f g′h0

12

[
(1 + cosγ)R3 − (δ3

1 + δ3
2 cosγ)

]
−πR2

[
g′H

(
dR
dt

+
αβR2

8
sinγ

)
+
α(2 − α)f 2R2

16

(
dR
dt

+
αβR2

12
sinγ

)]
= 0. (30)

Note that Eqs. (21) and (22) were also used in the derivation.10

3.5 Combining the mass conservation into the momentum flux in the most general
case γ≥0

To close the system of differential equations, we use the mass conservation equation.
Substitution of Eqs. (27) and (22) into Eq. (10) yields:

Q − q = 2πR

{
α(2 − α)f 2R2

8g′
+
[
h2

0 +
2f (Q − q)

g′

]1/2
}
dR
dt

− πfR2[
(g′h0)2 + 2f g′(Q − q)

]1/2

dq
dt

(31)15

16
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We note that, in the special case of a steady retroflected current (i.e., dq/dt=0), the
second term disappears. As it turned out, this term is small and can be neglected
even in the unsteady retroflected currect. The numerical solution, which will be shortly
described, confirms that the second term relative contribution is no more than O(0.01).
With this neglect, we get a quadratic equation for (Q−q) whose physically relevant5

solution (Q≥q) is,

Q − q =
µ
g′

α(2 − α)f 2R2

8
+ f µ +

[
(f µ)2 +

α(2 − α)f 3R2µ
4

+ (g′h0)2

]1/2
 , (32)

where µ=2πRdR/dt. At this point, substitution of the mass conservation (32) into the
geostrophic and circular conditions (21), (22), and the momentum Eq. (30) leads to our
desired single differential equation (of the first order) for R as a function of t with the10

known parameters Q, h0, g′, f , α, β, and γ. This equation is extremely cumbersome
(occupying more than a page) and, therefore, is not presented here.

For the initial conditions at t=0, we take the initial radius Ri of the BE to coincide with
the width of incoming current d1. From Eqs. (20) and (21) we conclude that

Ri =
2
f

g′
(
h̃ − h0

)
α


1/2

. (33)15

Our complete desired solution will be shortly presented. Before doing so, however, it
is necessary to re-examine the scales in the initial conditions. This is done in the next
subsection.

3.6 Examination of the instantaneous initial formation limit

Since the initial conditions involve the instantaneous creation of an eddy, it is not a20

priori obvious that our earlier short-and-long scales are valid at that time. We shall now
17
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show that this is, nevertheless, the case. To do so, we first note from Eq. (32) that,∣∣∣∣ 1
f R

dR
dt

∣∣∣∣ < 4g′Q

πα(2 − α)f 3R4
, (34)

and, second, we note that, for h0=0 and t=0, Eq. (33) takes the form:

Ri =
2
f

(2f g′Q)1/2

α

1/2

, (35)

where, as before, the subscript “i ” indicates the initial conditions.5

Substituting Eq. (35) into the right-hand side of Eq. (34) leads to:∣∣∣∣ 1
f R

dR
dt

∣∣∣∣ < α
8π(2 − α)

, (36)

which is valid at the initial time. We now further note that the right-hand side of Eq. (36)
is maximal for α=1 so that,∣∣∣∣ 1
f R

dR
dt

∣∣∣∣ < 1
8π

≈ 0.04,10

implying that, even at the beginning of the BE development, the scale dR/dt is much
smaller than the scale f R.

4 Numerical solution of the ODE system

We solved the system (30), (32) subject to the initial condition (33) by using the Runge-
Kutta method of the fourth order. We used the following parametric values: Q=70 Sv;15

g′=2×10−3 ms−2; f=8.8×10−5 s−1 (corresponding to 35◦ of latitude). We took the val-
ues zero and 300 m for h0, and the values 2.3×10−11 and 6×10−11 m−1 s−1 for β. The

18
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values of α and γ were varied between 0.1 and 1.0, and between 0◦ and 89◦, re-
spectively. For the case of zero potential vorticity and zero near-shore thickness, the
evolution the BE radius with time is shown in Fig. 4. Here, the theoretical evolution
at infinity is not very far from the value at t=250 days. It is seen that, although the
radius increases monotonically for any value of γ, its growth for nonzero γ quickly be-5

comes very slow, and there exist asymptotic values of R that decrease with growing γ.
Physically, these asymptotes correspond to the balance between the combined effect
of F1 and F2, and the β-force, F4. The analogous picture for h0=300 m is similar, but
the asymptotical values are somewhat smaller. The maximal difference is for γ=75◦ for
which we obtain an asymptotical value of 181 km instead of 195 km.10

Once the growth of the BE diminishes, only a very small part of the incoming mass
flux goes into the BE. This is shown in Fig. 5, which displays Φ as a function of time
for α=1, h0=0. It is seen that, only when the wall is zonal (γ=0), Φ increases mono-
tonically. The corresponding curve intersects the “dead line” curve Φ=1, indicating
that the vorticity paradox occurs in the area above this line. Finally, Φ approaches15

an asymptotic value, which is close to 4/3. When γ 6=0, the graphs quickly reach their
maximal values, which decrease with growing γ, and then go down and approach zero.
Increasing h0 leads to a slight increase in the peaks. We see that for γ≥15◦, Φ does
not reach unity regardless of the value of α. Note that for α=1 and h0=0, the maximal
values of Φ can be expressed approximately as 1.012+0.32 exp(−γ/3.41)−γ/225.20

Figure 6 shows the influence of varying PV on the evolution of BE radius (Fig. 6a)
and Φ (Fig. 6b) for γ=30◦ and h0=0. The graphs become smoother with decreasing α.
According to Eq. (33), the initial radius of the BE grows, and so our system gradually
approaches the condition of balance between the currents momentum-flux and the BE
β-force. Therefore, as α decreases, the growth of the BE over time becomes weaker25

and more uniform, and so does the required mass flux. We note that, starting from
γ=45◦, our model does not work for very large PV (with α≈0.1) because, in that case,
the β-force exceeds the combined effect of the currents already at the initial moment
of time. So, by analogy with the situation described by Nof (1999), the BE should leak

19
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as a result of being forced by β into the wall. We expect that, under such conditions,
the BE cannot be nearly circular.

Qualitatively similar results were obtained for the magnified value of β. However,
as expected, the asymptotical values of R and maximal values of Φ for γ 6=0 were
reduced. For example, in the case α=1.0, h0=0, β=6×10−11 m−1 s−1, we obtained the5

asymptotical values of R to be approximately 230, 200, 185, 170, and 160 km, and
maximal values of Φ to be 0.84, 0.73, 0.63, 0.54, and 0.44 for γ being 15◦, 30◦, 45◦,
60◦ and 75◦, respectively.

5 Numerical simulations using a one-and-a-half layer model

5.1 Numerical model description10

We used a modifed version of the Bleck and Boudra (1986) reduced gravity isopyc-
nic model with a passive lower layer, and employed the Orlanski (1976) second-order
radiation conditions for the open boundary. The downstream streamlines were not
disturbed when they crossed the boundary, suggesting that these open boundary con-
ditions are satisfactory. In addition, changing the location of the boundary did not alter15

the behavior of the interior flow, which indicated that the boundary conditions are suffi-
cient.

We chose the initial PV so that the starting value of α was 0.1, 0.4, and 1.0. The
basin size was 3200×1600 km, and the continent was modeled by one fixed vertical
wall (600 km long), and one adjacent wall that could be either horizontal (2200 km20

long) or inclined by the angle γ to horizontal; in this connection, γ varied between
15◦ and 75◦ with a step of 15◦. The walls were slippery. The experiments begun
by turning on the flow at t=0; the numerical source was an open channel containing
streamlines that were parallel to the wall for the incoming current, and horizontal for
the outgoing flow. As in our theoretical model, the initial velocity profile across the25

channel was linear, and the depth profile was parabolic. The numerical parameters of

20
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the model were: a time step of 120 s, a grid step of 20 km, and a Laplacian viscosity
coefficient of ν=700 m2 s−1 for γ>15◦, 1000 m2 s−1 for γ=15◦, and 1800 m2 s−1 for the
zonal wall. The high value in the last case was the lowest we could choose for stability.
The reduced gravity was g′=2×10−2 ms−2, the Coriolis parameter f0=8.8×10−5 s−1,
and the prescribed flow Q=70 Sv. We took β to be 2.3×10−11 m−1 s−1 (realistic) and5

6×10−11 m−1 s−1 (magnified), and the initial depth of the upper density layer at the wall
to be zero and 300 m.

The modeled time in all our experiments was long, about 210 days. The above
choices for resolution were adequate for our characteristic Rossby radius of 30 km,
which corresponded to H≈350 m with our choice of g′ and f0. Furthermore, these10

choices always allowed for at least nine grid points across the downstream current,
which is also adequate.

Several comments should be made at this point. First, in all our comparisons, we
used the magnified value of β in order to make the development of BE faster and less
sensitive to the distorting effect of viscosity. Second, as in NP, the frictional forces15

altered the PV, and, consequently, the value of α decreased during the experiments.
To make the parameters of our model and numerics closer to each other, we estimated
the value of α after each 10 days of simulated time and reintroduced this value into
our theoretical model. For a coastal slant of 60◦ and more the decrease in α led to
a squeezing of the BE into the wall, so that our model did not allow the calculation of20

R(t) and Φ(t) for some of the time intervals. Instead of this, we artificially interpolated
these functions, supposing R(t) to be nearly constant, and assuming negative values
of Φ(t).

Third, the values of in the numerics, which were calculated with a period of 1 day,
were subject to strong local oscillations with periods of about 5 days, so we used the25

polynomial fitting to smooth these oscillations out. In addition, although we calculatedQ
and q numerically through the ending grid points of cross-sections (which were chosen
to be close to the lines of given depth of the upper layer) we could not determine Φ
accurately. This is because the error inherent in the choice between two neighboring

21
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points could be as high as 0.15. Otherwise, we estimated the values of R(t) based on
the simulations obtained every 10 days, and, consequently, the results for R look much
more stable than those for Φ.

5.2 Results

Thickness contours of a typical numerical experiment are shown in Fig. 7. We see5

that the basic eddy gradually develops in time without altering the one-dimensionality
of the downstream retroflected flow. Figure 8a, b, c shows a comparison of the radius
of the BE during the development time for γ=0◦, γ=30◦, γ=60◦ all with h0=0. The
starting value of α was 1. The results of our analytical model are given for α which
was altered in time (solid curves) and averaged over the period of BE development10

(dashed curves). For every ten days, solid circles indicate the numerical values. The
analytical results are in very good agreement with the numerics, especially for γ=0◦.
With increasing γ, the agreement becomes a little worse, indicating that, as a result
of growing coastal slant, the radius decreases more slowly in the numerics than in our
model. Nevertheless, our comparison is satisfactory.15

The comparison of Φ, which is in general very good, is given in Fig. 9. Here, the
open circles show the fitted numerical values. At times, the results of our model and
numerics differ significantly at the beginning of development (of the first BE), when the
numerically obtained value of Φ can even be negative (Fig. 9, right panel). As the left
panel of Fig. 9 illustrates, however, this is not always the case. Often the results agree20

from the beginning of the experiment. The former issue might be an outcome of our
numerical initialization. Later in the BE development, the agreement in all cases clearly
improves, although the lower panel of Fig. 9 does show some oscillations around the
small theoretical values. This might be an effect of a meandering outgoing current
in the numerical experiments. In addition, we note that when the theoretical value of25

Φ=(Q−q)/Q is small, its relative error could be large because it incorporates errors in
Q and q when q≈Q. It should be also noted that, in some of our runs, which started
with α=0.4 (not shown), the numerical value of Φ noticeably increased at the end of

22
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the numerical experiment, which is probably an effect of the incipient development of
the next eddy.

6 Summary and conclusions

We developed a nonlinear analytical model of the BE formation and growth (Fig. 2),
taking into account a nonzero thickness of the upper layer around the retroflection (H)5

and a slant of the coastline (γ). The main results can be summarized as follows:
1) The BE grows approximately as t1/4 only in the case of a zonal coastline (i.e., no

slant). When the slant is nonzero, the growth rate slows down and almost completely
diminishes as the slant increases (Fig. 4). This leads to a terminal radius, which corre-
sponds to the situation where the northeastward component of the northward β-force10

exactly balances the southwestward momentum-flux of the incoming and outgoing cur-
rents. The northeastward component of the Coriolis force is zero in this terminal case
because the eddy is not growing so that it is not forced off the wall.

2) When the slant is not zero, the mass flux going into the BE is not constant. At first,
it grows fast and achieves a peak value; then it decreases and tends to zero (Fig. 5).15

3) When the slant of the coastline exceeds 15◦, the theoretical peak of the mass flux
going into the BE with zero PV is smaller than the value of incoming flux implying the
disappearance of the “vorticity paradox”.

The above theoretical results are all in very good agreement with the one-and-a
half-layer numerics (Figs. 6, 7, 8 and 9). As the growth of the BE is limited by an20

asymptotic value, the final radius of detached ring decreases with a growing slant. For
example, in the vanishing thickness along the wall case (i.e., h0=0), the radii cannot
exceed 220 km for γ=45◦ and 195 km for γ=75◦. We note that, using the simple time-
averaged retroflection model from a zonal coastline model, Pichevin et al. (1999) found
the theoretical radii of Agulhas eddies to be 227 km, which is somewhat smaller than25

our value for γ=15◦ (about 279 km) and γ=30◦ (about 242 km). In our calculation, the
mass partition Φ is time-dependent but the process is time-averaged and this gives

23
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less than a unity for Φ when the angle γ is smaller than 15◦. This means that we
have circumvented the vorticity paradox issue for slanted coastlines but the question of
what happens when there is a small slant or no-slant remains open. Another remaining
issue is that of the rings shedding process – this is beyond the scope of this paper and
will be addressed in a companion article.5

Like many other retroflection solutions, our solution has its counter-intuitive aspects.
First, because the BE is anticyclonic, our solution exists only for those incoming cur-
rents whose upstream vorticity is anticyclonic. The solution breaks down for currents
whose vorticity is cyclonic and the issue is reconciled by accepting the essential role
of viscosity in altering the vorticity to the required downstream structure within the BE.10

That alteration of vorticity probably takes place in the ocean even in the anticyclonic
case where we expect α to gradually decrease with time. Without such a decrease,
the upstream speeds (though not the transports) must constantly increase as the BE
grows. This accommodates for the increasing velocity along the eddy edge, which, via
Bernoulli, is transmitted both upstream and downstream. Second, with the exception15

of the zero PV case, which we discuss in detail, it is hard to conceive of a uniform PV
retroflection. This is why we simply assumed a linear velocity structure upstream and
within the eddy. Our numerics suggest that, because we used integrated techniques
involving momentum fluxes, the detailed velocity distribution is smoothed out anyway
so that it makes very little difference what profile one chooses.20

Appendix A

List of symbols

AC – Agulhas Current
BE – basic eddy25

Cx – eddy migration rate in the zonal direction
Cy – eddy migration rate in the meridional direction

24
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Cξ, Cη – eddy migration rates in the rotated coordinate system
d1 – width of incoming current
d2 – width of retroflected current
EAC – East Australian Current
F1 – force of incoming current5

F2 – force of retroflected current in projection to ξ-axis
F3 – Coriolis force associated with the migration of the eddy
F4 – β-force of the eddy
f – the Coriolis parameter
f0 – approximate Coriolis parameter at the eddy center10

g′ – reduced gravity
h – upper layer thickness
H – upper layer thickness outside the retroflection area
h0 – upper layer thickness at the wall
h̃ – upper layer thickness in the stagnant wedge situated between the incoming and15

retroflected currents
h – undisturbed upper layer thickness
MOC – meridional overturning circulation
NBC – North Brazil Current
NP – Nof and Pichevin (2001)20

PV – potential vorticity
Q – mass flux of the incoming current
q – mass flux of the retroflected current
R – radius of the eddy (a function of time)
Rd – Rossby radius of the eddy (a function of time)25

Rf – radius of the eddy at the moment of detachment
Ri – initial radius of the eddy
r – radius in polar coordinate system
s – area of integration

25
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Sv – Sverdrup (106 m3 s−1)
t – time
t̂ – time in the fixed coordinate system
u, v – velocities in the zonal and meridional directions
u∗, v ∗ – velocities in the rotated coordinate system axes5

u1 – absolute value of the current velocity at the edge
V – volume of the eddy
vθ – orbital speed
x, y – zonal and meridional coordinate axes
α – vorticity (twice the Rossby number)10

γ – slant of coastline
δ1, δ2 – differences between the eddy radius and
current widths d1, d2, respectively
∆ρ – difference between densities of lower and upper layer
ε – small parameter defined as βRd/f015

θ – angle in polar coordinate system
µ – parameter defined as 2πRdR/dt
ξ, η – axes of rotated moving coordinate system
ξ̂, η̂ – axes of rotated fixed coordinate system
ρ – upper layer density20

Φ – ratio of mass flux going into the eddies and incoming mass flux
ψ – streamfunction
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Fig. 1. A conceptual portrayal of the AC system. Areas shallower than 3000 m are shaded. The
edge of the continental shelf is represented by the dotted line at the 500 m isobath. Intense
currents and their component parts are black; the general background circulation is indicated
by open arrow. Cyclonic eddies are open; anti-cyclonic rings and eddies black. Adapted from
Lutjeharms (2006).
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Fig. 2. A schematic diagram of the model under study. E is the center of the base eddy (BE).
In the (rotated) coordinate system ξ is directed along the coastline, and η is directed normal to
the coastline. The incoming flux Q flows along the wall whereas the outgoing (retroflected) flux
q is directed to the east. The widths of the currents are d1 and d2, respectively. The “wiggly”
arrow indicates the migration of the base eddy (BE); it results from both the eddy growth, which
forces the eddy away from the wall, and from β, which forces the eddy along the wall. We shall
see that the migration Cη(t) is primarily due to the growth, whereas Cξ(t) is primarily due to
β. The thick grey line (with arrows) indicates the integration path, ABCDA; h̃ is the upper layer
thickness of the stagnant region wedged in between the upstream and retroflecting current,
and H is the off-shore thickness. The segment D2D3 is involved in the expressions containing
γ.
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 Fig. 3. A schematic diagram of the model in the special case of a zonal coastline. Here, we
use the coordinate system (x, y). The fluxes Q and q are separated by the streamline at x>0
and y=−d1, so that the combined segment AA2 serves as an analog of both AA1 and D2D1
shown in Fig. 2. The “wiggly” arrows show the migration of the eddy (southward on account of
the BE growth, and westward due to β).
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Fig. 4. The theoretically calculated zero PV BE radius versus time for γ=0◦ (solid thick line),
15◦ (dashed thick line), 30◦ (dash-and-dotted thick line), 45◦ (solid thin line), 60◦ (dashed
thin line), and 75◦ (dash-and-dotted thin line). The parameters are: α=0.1, h0=0, and

β=2.3×1011 m−1 s−1. The solid line time-dependency is proportional to t1/4. Note that the
rings usually reach a terminal size. The shaded region was determined from the one-and-a
half-layer model numerical experiments and denotes the time that the eddies detach. This
detachment issue is beyond the scope of this paper and will be addressed in a companion
article.
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Fig. 5. The same as in Fig. 4, but for volume flux partition Φ. The dotted “dead line” shows
the limit of physical relevance (q=0, Φ=1). The physically impossible positioning of the solid
line (no slant case) above this line corresponds to the “vorticity paradox”. That impossible
positioning disappears even for a small slant of 15◦ (dashed line).
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Fig. 6. Theoretical plots of the BE radius (a) and Φ (b) versus time for α=0.1 (solid thick lines),
0.2 (dashed thick lines), 0.4 (solid thin lines), 0.6 (dashed thin lines), and 1.0 (dash-and-dotted
thin lines). Parameters values: γ=30◦, h0=0, β=2.3×10−11 m−1 s−1. Note that the line for α=0.1
in Fig. 6b practically coincides with the abscissa.
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Fig. 7. Typical numerical experiment showing the growth of the BE. Note that the retroflected
current is one-dimensional downstream. Spacing between contours represents increments of
200 m and the maximum thickness at the center of the BE is given within the eddy.
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Fig. 8. The modeled and numerical values of the BE radius during the development for h0=0
and three different slants (0◦, 30◦, and 60◦). All runs started with zero PV (α=1). However,
since numerical friction alters the PV, the theoretical computations were continuously adjusted
on the basis of either a gradual numerically-altered value of α (solid curves) or an averaged
value (dashed curves). As before, the numerical values (solid circles) are given every 10 days.
For the solid line the initial value of α was unity whereas the final value was 0.224 (left panel),
0.227 (right) and 0.382 (lower). The dashed line is based on averages, 0.423 (left), 0.270 (right)
and 0.326 (lower). Note that, as expected, the numerical values lie above the theoretical lines
because friction tends to flatten out the eddy.
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Fig. 9. The same as Fig. 8, but for modeled (solid and dashed line) and numerical (overlapping
open circles) values of the volume flux partition Φ.
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